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ABSTRACT

A simple improvisation technique for designingreelr quadratic regulator (LQR) optimal controller & robotic
pan and tilt platform (PTP) with two degrees ofeflem (DOF) has been proposed in this paper. Netwtder linear
model of this robotic system has been stabilizeditmin the desired performance criteria via LQRe Pperformance of
the proposed LQR controller is highlighted througimparisons with the existing proportional derivat{PD) and lead

Compensator controllers on account of both stetatg s&ind transient response parameters.

KEYWORDS: Linear Quadratic RegulatoNewton-Euler Equation, Robotic System With 2- DOFansient Response

Analysis
1. INTRODUCTION

Camera robotics is an enormous field of engineeiongdentifying threat, reducing catastrophic etgemo follow
a moving object and also for automation and martufangy. Pan and tilt platform (PTP) are widely usedthese purpose.
Pan and Tilt mechanism is basically a robotic malaifor having two degree of freedom [1]. A cameaia be mounted on

tilt platform as shown in Figure 1.

Figure 1: A Digital Camera Mounted on PTP

These cameras have been consistently used forsegpiation of entire space. They are also used idebo
patrolling, recording of a moving object, searcld aascue operation, automation and manufacturingdeMing of PTP

has been done by Newton-Euler equation [2,3].

Three dimensional representation of PTP has beesepted in Figure 2. All physical parameters ofdpgtem
havebeen obtained from experiments using Compidedalesign (CAD) [2,3]. A linear model has beenaated after

neglecting centrifugal forces and coulomb friction.
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Figure 2: Three Dimentional View of PTP
In order to capture maximum workspace and to obdasired position and orientation of the camerareths a
need to design a robotic system which meets thewolg transient response specifications [2, 3].
o Settling time ( T) 0.1< Ts< 0.5 seconds.

» Steady state erroggvithin +2%.

» Percentage overshoot fMk 22%.

The paper is arranged in following manner: SecHomarrates dynamic and state space model of a manila
mechanism. Section 3 describes response analysleafystem obtained in section 2. An optimal cudl@r has been
designed for both pan and tilt mechanisms in secfioalong with discussion on the step responseysisabf the
compensated system. Comparative study of varioosaters have been shown in Section 5. Future s@fhe obtained

results has been discussed in the section 6.

2. PHYSICAL MODELING OF PTP
2.1. Dynamic Linear Model for Tilt Mechanism
The nonlinear model of Pan mechanism has been a@elusing Newton-Euler equation with few assunmgtio

[2,3] as:

1oy B4 R 8+ sgrB) +MGL.sinE), @)

Wheret=Torque, i =Effective inertial load, = Viscous friction, &= Coulomb friction, 0= Angle between the
force (mg) and arm length L. The nonlinearity o€ thystem is due to coulomb-friction and corioliscé&s. These

nonlinearities are neglected to obtain a linear ehém stability analysis of the system in [2, 3, &s:
T= et & l:v@' @)

Dynamic linear model of PTP forms a second ordéfemintial equation which can be determined by the

Jacobean matrix [2,3]. Dynamic model can be copdeiito state space representation for the follgvatate variables:

X, =0, :&and % :&&2 =& [5] as:
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o 1],
o  -0.1578]" u ®)

y=[31.2495 ¢ x @)
Transfer function for tilt mechanism can be obtditiy state equations (3) and (4) as G(s) =C(S18\)rom
[2,3,4] as:

Gy (5)= 31.24954
"2 401578 ()

Similar procedure has been followed to obtain thagfer function of the pan mechanism.

2.2Dynamic Linear Model For Pan Mechanism

The dynamic linear model of the pan mechanism whédembles the same second order differential Equat

after neglecting nonlinearities as

T= ot &+ FV@, (6)

State space model [5] for the pan mechanism has bbtined for the same state variables used mttith

mechanism given in [2, 3, 4] as:

[o 1],
1o -0.0168]" u (@)

y=[2.3964 § x )

3. TRANSIENT RESOPNSE OF UNCOMPENSATED PTP
3.1 Step Response of Tilt Mechanism

Closed loop system for the tilt mechanism, withrop@op transfer function given in (5), is shownHRigure 3.
Unity feedback step response of the tilt mechariambeen obtained as shown in Figure 4.

Settling time and peak overshoot are obtainedHisrresponse as 49.5sec and 95.6% respectivelgeTiesults

are far away from the required performance spextifics.

Similarly step response for pan mechanism hastedsea obtained.

31,2495

4015
Bal  Trangfer Fon

—

b

Figure 3: Block Diagram of Close Loop Uncompensatedilt Mechanism
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3.2 Step Response of Pan Mechanism

Closed loop system for the pan mechanism, with dpep transfer function given in (9), is shown ilgle 5.

Unity feedback step response of the tilt mechariambeen obtained as shown in Figure 6.

Settling time and peak overshoot are obtained Her uncompensated pan mechanism as 464.8sec artd 98.3

respectively. These results are also far away frenrequired performance specifications.

Step Response of uncompensated tilt mechanism
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Figure 4: Step Response of Uncompensated Tilt Mechiam
Step Response of uncompensated pan mechanism
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Figure 5: Step Response Uncompensated Pan Mechanisiin
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Figure 6: Block Diagram of Close Loop UncompensateBan Mechanism

Therefore, both the systems need a compensatandeting the desired performance criteria. Lead @nsator

[2] and PD controller [3], already reported in fiterature, compensate the system in frequency domrad have some

limitations.
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e The order of the system increases after compensagtbdth controllers because they add one more goudezero

in its transfer function.

» There is no clarification to choose a particulartthoe of optimizing K K;and Ky for PID compensator which

optimises the designers need.

» Lead compensator becomes less effective when #tersyoperates at different frequency from thatlthvit is

providing the required phase and gain shift.

Hence, modern control techniques[5,6] like polecptaent method, linear quadratic regulator (LQRI), dtate
feedback, and reduced order observer may be appligil technique is reported to perform best outheke techniques
[5]. Robotic system, both pan and tilt, dynamios described by a set of linear differential equatind cost is described
by a quadratic function to model it into a LQR pieoh. A detailed procedure for designing LQR [6] fbe system is

discussed in the section 4.
4.LINEAR QUARDATIC REGULATOR DESIGN FOR THE ROBOTIC S YSTEM [5,6]

State variable feedback is a direct and powerfthrnigue for analysis of dynamic system becausearantees
desired close loop response. System must be clattifor state feedback control applications. Te@hnique can be also
applied for time varying and nonlinear systemshis technique a control signal is chosen fromrestaintaneous state and

feedback to the system as shown in Figure 7. Theacignal u is chosen as u= - (K.x), where Ktete feedback gain.

K

Figure 7: Block Diagram of LQR [6]

Ackermann's formula [5] determines the value ofifsck gain K for desired location of closed loopegdor

both system stability and its specified performar@arresponding performance index [7,8 Jis given as

0
J= J’ (X" QX+ UTRU)d, (10)
0

The optimal solution of J is found by choosing sit@te weighing matrix Q and control matrix R topwsitive or

semi-positive definite [8,9].

Optimal state feedback controller K="B'.P has a stabilizing control property if P is a syetric positive
definite in the formulated Algebraic Riccati Equatti[10]. An unstable system must fulfil the followitwo conditions for

design of LQR controller [8].

www.iaset.us editor@iaset.us



6 Atul Kumaradhdey & Monika Mittal

* LQR Theorem | (A, B) must be controllable.

« LQR Theoremll {Q, A) must be observable.
Where A, B are the system state variable modeliogstr
4.1. Linear Quardratic Regulator Design for Tilt Mechanism [5,6]

Robotic system is controllable so LQR can be desigior this system [8, 9]. The objective of theulegpr is to
achieve steady state time less than 0.5 secondicamdduce maximum overshoot below 5%. For desig@ngQR

controller, designer has to choose matrices Q and R

The simplest case is to assume R=1 and GC3]. Corresponding performance index J placeskiquportance

on the state variables. But choosing Q matrix & @es not satisfy LQR theorem |I.

Next different values of matrices Q and R are tedtdor the compensation and analysis of the rotsytstem in
the manner that both LQR theorems | and Il aresBati starting with Q =[1 1 ;1 1] and R=1. Transieasponse
specification can further be improved by changinfydn the set of values {1, 0.1, 0.01, and 0.001kombination with

the tuning of @, element of Q matrix keeping all other elements anged. Algebraic riccati equation has been solued f
all these combinations to obtain optimal feedbaak ¢(.

Different cases are given below:
Case -1

1 1
For Q:L J & R=1, the obtained parameters are

K= [ 3.5355 4.2689], £4.38 sec, M=0.395%.

Case-2

2 1
For Q:{ 1 1}& R=1, the obtained parameters are

Kaq=[ 1.414 1.80], T=3.33sec, M=1.01%.

Case-n

976 1
For Q:{ 1 1}& R=0.001, the obtained parameters are . =[ 987.9271 54.3938], ;1=0.139 sec,

M,=0.414 %
where pre-compensation is used in this case te scal
the reference input so that output matches it ffbbhas N (Pre gain multiplier)=31.5.

Since Kyix gain satisfies all the specifications, stabiliatate space model of the tilt mechanism is derivgdg
it as:
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| awro sast| b
X= X+ u,
-987.9 -54.5 31. (11)

y=[31.25 § x (12)

Step response of the stabilized tilt mechanismesystaind its states are shown in Figure 8 and Fi§ure

respectively.

Step Response of compensated tiit mechanism
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Figure 8: Step Response of Compensated Tilt Mecham
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Figure 9: Step Response of Tilt Mechanism States
Similar procedure is followed for the pan mechanéso.
4.2. Linear Quardratic Regulator design for Pan Mebanism[7,8]
Different case studies are:
Case-1

11
For Q—L J& R= 1, the obtained parameters are

Kipa[ 1 1.7], T=4.35 sec, M0.433%
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Case-2

2 1
For Q:[ 1 J& R=1, the obtained parameters argd[ 1.4142 1.9399], F3.32 sec, M=1.06%

Case-n

| 982
For Q= 1 & R=0.001, the obtained parameters arg,K=[ 990.9591 54.5901], ;£0.138 sec,
My=0.419 %

Here, N (Pre gain multiplier)=412 is used.

Since Kyangain satisfies all the specifications, stabiliztate space model of the pan mechanism is derisieg u

X= 0 . X+ 0 u
1991 -54.6 412" 17

y=[2.396 ¢ x (18)

Step response of the stabilized pan mechanismmyatal its states are shown in Figure 10 and Figdre

respectively.

Step Response of compensated pan mechanism
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Figure 10: Step Response of Compensated Pan Mechsmi

response Cure k1, %2 of pan, versus t
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Figure 11: Step Response of Pan Mechanism States
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5. RESULTS

The LQR optimized models of both pan and tilt medtms obtained in this study are compared with ¢hos

reported in the literature i.e. with Lead compeos§] and with PD controller [3] in Table 1.

Table 1: Compration of Different Control Techniques

Tilt Mechanism Pan Mechanism
System with Ts E % OS Ts E %
(Sec) S (Sec) s 0S
LQR 0.139 0 0.41 0.138 0 0.41
Lead compensator 0.196 0.7%7 4.44 0.207 0.08 4.96
PD Controller 0.206| .0002 21.7 0.19 2010 21.5

It is observed from Table 1 that settling timeasig state error and maximum overshoot are bebeih @R case.

Also, the order of the system is not increasedQ@iRLcase while it increases to three in other cases.
6. CONCLUSIONS

An optimal control action LQR has been modifiedcassfully to achieve optimized modelling of botm nd
tilt mechanisms for the desired specifications. ®p&mized robotic system is analysed and compuaiéd other control
techniques reported in the literature. It is obsdrthat the proposed modification has best perfoceman comparison to

other techniques as judged from the values of uargpecifications.
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