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ABSTRACT 

A simple improvisation technique for designing a linear quadratic regulator (LQR) optimal controller for a robotic 

pan and tilt platform (PTP) with two degrees of freedom (DOF) has been proposed in this paper. Newton-Euler linear 

model of this robotic system has been stabilized to obtain the desired performance criteria via LQR. The performance of 

the proposed LQR controller is highlighted through comparisons with the existing proportional derivative (PD) and lead 

Compensator controllers on account of both steady state and transient response parameters.  

KEYWORDS: Linear Quadratic Regulator, Newton-Euler Equation, Robotic System With 2- DOF, Transient Response 

Analysis 

1. INTRODUCTION 

Camera robotics is an enormous field of engineering for identifying threat, reducing catastrophic events, to follow 

a moving object and also for automation and manufacturing. Pan and tilt platform (PTP) are widely used for these purpose. 

Pan and Tilt mechanism is basically a robotic manipulator having two degree of freedom [1]. A camera can be mounted on 

tilt platform as shown in Figure 1. 

 

Figure 1: A Digital Camera Mounted on PTP 

These cameras have been consistently used for representation of entire space. They are also used in border 

patrolling, recording of a moving object, search and rescue operation, automation and manufacturing. Modelling of PTP 

has been done by Newton-Euler equation [2,3].  

Three dimensional representation of PTP has been presented in Figure 2. All physical parameters of the system 

havebeen obtained from experiments using Computer aided design (CAD) [2,3]. A linear model has been obtained after 

neglecting centrifugal forces and coulomb friction. 
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†Courtesy:http://catsfs.rpi.edu/~wenj/ECSE446S06/project_overview.html 

Figure 2: Three Dimentional View of PTP 

In order to capture maximum workspace and to obtain desired position and orientation of the camera, there is a 

need to design a robotic system which meets the following transient response specifications [2, 3]. 

• Settling time ( Ts ) 0.1≤ Ts ≤ 0.5 seconds. 

• Steady state error ess within ±2%. 

• Percentage overshoot (Mp) < 22%. 

The paper is arranged in following manner: Section 2 narrates dynamic and state space model of a pan and tilt 

mechanism. Section 3 describes response analysis of the system obtained in section 2. An optimal controller has been 

designed for both pan and tilt mechanisms in section 4 along with discussion on the step response analysis of the 

compensated system. Comparative study of various controllers have been shown in Section 5. Future scope of the obtained 

results has been discussed in the section 6. 

2. PHYSICAL MODELING OF PTP 

2.1. Dynamic Linear Model for Tilt Mechanism 

The nonlinear model of Pan mechanism has been developed using Newton-Euler equation with few assumptions 

[2,3] as: 

eff v cτ=j θ+F θ+F sgn(θ)+MGL.sin(θ),&& & &
                                                            (1) 

Where τ=Torque, jeff =Effective inertial load, Fv = Viscous friction, Fc= Coulomb friction, θ = Angle between the 

force (mg) and arm length L. The nonlinearity of the system is due to coulomb-friction and coriolis forces. These 

nonlinearities are neglected to obtain a linear model for stability analysis of the system in [2, 3, 4 ] as: 

eff vτ j θ F θ,= +&& &
                      (2) 

Dynamic linear model of PTP forms a second order differential equation which can be determined by the 

Jacobean matrix [2,3]. Dynamic model can be converted into state space representation for the following state variables: 

1 2x θ, x θ= = &
and 1 2x θ, x θ= =& &&& &

 [5] as: 
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0               1 0
x= x+ u,

0       -0.1578 1

   
   
   

&                                            (3) 

[ ]y= 31.2495   0 x,                   (4) 

Transfer function for tilt mechanism can be obtained by state equations (3) and (4) as G(s) =C(S.I-A)-1.B from 

[2,3,4] as:  

tilt 2

31.24954
G (s) ,

s 0.1578s
=

+                          (5) 

Similar procedure has been followed to obtain the transfer function of the pan mechanism. 

2.2 Dynamic Linear Model For Pan Mechanism 

The dynamic linear model of the pan mechanism which resembles the same second order differential equation 

after neglecting nonlinearities as 

eff vτ j θ F θ,= +&& &
                    (6) 

State space model [5] for the pan mechanism has been obtained for the same state variables used for the tilt 

mechanism given in [2, 3, 4] as: 

0            1 0
x= x+ u,

0     -0.0168 1

   
   
   

&                               (7) 

[ ]y= 2.3964   0 x,                   (8) 

3. TRANSIENT RESOPNSE OF UNCOMPENSATED PTP 

3.1 Step Response of Tilt Mechanism 

Closed loop system for the tilt mechanism, with open loop transfer function given in (5), is shown in Figure 3. 

Unity feedback step response of the tilt mechanism has been obtained as shown in Figure 4. 

Settling time and peak overshoot are obtained for this response as 49.5sec and 95.6% respectively. These results 

are far away from the required performance specifications. 

Similarly step response for pan mechanism has also been obtained. 

 

Figure 3: Block Diagram of Close Loop Uncompensated Tilt Mechanism 
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3.2 Step Response of Pan Mechanism 

Closed loop system for the pan mechanism, with open loop transfer function given in (9), is shown in Figure 5. 

Unity feedback step response of the tilt mechanism has been obtained as shown in Figure 6. 

Settling time and peak overshoot are obtained for the uncompensated pan mechanism as 464.8sec and 98.3% 

respectively. These results are also far away from the required performance specifications. 

 

Figure 4: Step Response of Uncompensated Tilt Mechanism 

 

Figure 5: Step Response Uncompensated Pan Mechanism of 

 

Figure 6: Block Diagram of Close Loop Uncompensated Pan Mechanism 

Therefore, both the systems need a compensator for meeting the desired performance criteria. Lead compensator 

[2] and PD controller [3], already reported in the literature, compensate the system in frequency domain and have some 

limitations. 
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• The order of the system increases after compensated by both controllers because they add one more pole and zero 

in its transfer function. 

• There is no clarification to choose a particular method of optimizing Kp, K i and Kd for PID compensator which 

optimises the designers need. 

• Lead compensator becomes less effective when the system operates at different frequency from that at which it is 

providing the required phase and gain shift. 

Hence, modern control techniques[5,6] like pole placement method, linear quadratic regulator (LQR), full state 

feedback, and reduced order observer may be applied. LQR technique is reported to perform best out of these techniques 

[5]. Robotic system, both pan and tilt, dynamics are described by a set of linear differential equation and cost is described 

by a quadratic function to model it into a LQR problem. A detailed procedure for designing LQR [6] for the system is 

discussed in the section 4. 

4. LINEAR QUARDATIC REGULATOR DESIGN FOR THE ROBOTIC S YSTEM [5,6] 

State variable feedback is a direct and powerful technique for analysis of dynamic system because it guarantees 

desired close loop response. System must be controllable for state feedback control applications. This technique can be also 

applied for time varying and nonlinear systems. In this technique a control signal is chosen from an instantaneous state and 

feedback to the system as shown in Figure 7. The control signal u is chosen as u= - (K.x), where K is state feedback gain.  

 

Figure 7: Block Diagram of LQR [6] 

Ackermann's formula [5] determines the value of feedback gain K for desired location of closed loop poles for 

both system stability and its specified performance. Corresponding performance index [7,8 ]is given as  

T T

0

J (X QX U RU)dt,
∝

= +∫                               (10) 

The optimal solution of J is found by choosing the state weighing matrix Q and control matrix R to be positive or 

semi-positive definite [8,9]. 

Optimal state feedback controller K= R-1.BT.P has a stabilizing control property if P is a symmetric positive 

definite in the formulated Algebraic Riccati Equation [10]. An unstable system must fulfil the following two conditions for 

design of LQR controller [8]. 
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• LQR Theorem I (A, B) must be controllable. 

• LQR TheoremII (√Q, A) must be observable. 

Where A, B are the system state variable model matrices.  

4.1. Linear Quardratic Regulator Design for Tilt Mechanism [5,6] 

Robotic system is controllable so LQR can be designed for this system [8, 9]. The objective of the regulator is to 

achieve steady state time less than 0.5 second and to reduce maximum overshoot below 5%. For designing a LQR 

controller, designer has to choose matrices Q and R.  

The simplest case is to assume R=1 and Q =CTC [7]. Corresponding performance index J places equal importance 

on the state variables. But choosing Q matrix as CTC does not satisfy LQR theorem II.  

Next different values of matrices Q and R are iterated for the compensation and analysis of the robotic system in 

the manner that both LQR theorems I and II are satisfied starting with Q =[1 1 ;1 1] and R=1. Transient response 

specification can further be improved by changing R from the set of values {1, 0.1, 0.01, and 0.001} in combination with 

the tuning of Q11 element of Q matrix keeping all other elements unchanged. Algebraic riccati equation has been solved for 

all these combinations to obtain optimal feedback gain K.  

Different cases are given below: 

Case -1  

For 
1      1

Q=
1      1

 
 
 

& R=1, the obtained parameters are  

K1tilt= [ 3.5355 4.2689], Ts=4.38 sec, Mp=0.395%. 

Case -2 

For 
 2      1

Q=
 1      1

 
 
 

& R=1, the obtained parameters are 

K2tilt=[ 1.414 1.80], Ts=3.33sec, Mp=1.01%. 

Case-n 

For 
 976   1

Q=
 1       1

 
 
 

& R=0.001, the obtained parameters are K ntilt =[ 987.9271 54.3938], Ts =0.139 sec, 

Mp=0.414 % 

where pre-compensation is used in this case to scale  

the reference input so that output matches it from [11] as N (Pre gain multiplier)=31.5. 

Since Kntilt gain satisfies all the specifications, stabilized state space model of the tilt mechanism is derived using 

it as:  
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   0               1    0
x= x+ u,

 -987.9     -54.55 31.5

   
   
   

&

                                         (11) 

[ ]y= 31.25   0 x,                         (12) 

Step response of the stabilized tilt mechanism system and its states are shown in Figure 8 and Figure 9 

respectively. 

 

Figure 8: Step Response of Compensated Tilt Mechanism 

 

Figure 9: Step Response of Tilt Mechanism States 

Similar procedure is followed for the pan mechanism also.  

4.2. Linear Quardratic Regulator design for Pan Mechanism[7,8] 

Different case studies are:  

Case -1  

For 
1    1

Q=
1    1

 
 
 

& R= 1, the obtained parameters are 

K1pan=[ 1 1.7], Ts=4.35 sec, Mp=0.433% 
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Case -2 

For 
 2     1

Q=
 1     1

 
 
 

& R=1, the obtained parameters are K2pan=[ 1.4142 1.9399], Ts=3.32 sec, Mp=1.06% 

Case-n 

For 
 982     1

Q=
 1         1

 
 
 

& R=0.001, the obtained parameters are Knpan =[ 990.9591 54.5901], Ts=0.138 sec, 

Mp=0.419 % 

Here, N (Pre gain multiplier)=412 is used.  

Since Knpan gain satisfies all the specifications, stabilized state space model of the pan mechanism is derived using 

it as  

    0          1   0
x= x+ u,

-991   -54.61 412

   
   
   

&
                             (17) 

[ ]y= 2.396   0 x                   (18) 

Step response of the stabilized pan mechanism system and its states are shown in Figure 10 and Figure 11 

respectively. 

 

Figure 10: Step Response of Compensated Pan Mechanism 

 

Figure 11: Step Response of Pan Mechanism States 
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5. RESULTS 

The LQR optimized models of both pan and tilt mechanisms obtained in this study are compared with those 

reported in the literature i.e. with Lead compensator [2] and with PD controller [3] in Table 1. 

Table 1: Compration of Different Control Techniques 

 Tilt Mechanism Pan Mechanism 

System with 
TS 

(Sec) 
Ess % OS 

Ts 

(Sec) 
Ess 

% 
OS 

LQR 0.139 0 0.41 0.138 0 0.41 
Lead compensator 0.196 0.757 4.44 0.207 0.08 4.96 
PD Controller 0.206 .0002 21.7 0.19 2x10-6 21.5 

 
It is observed from Table 1 that settling time, steady state error and maximum overshoot are best in the LQR case. 

Also, the order of the system is not increased in LQR case while it increases to three in other cases. 

6. CONCLUSIONS 

An optimal control action LQR has been modified successfully to achieve optimized modelling of both pan and 

tilt mechanisms for the desired specifications. The optimized robotic system is analysed and compared with other control 

techniques reported in the literature. It is observed that the proposed modification has best performance in comparison to 

other techniques as judged from the values of various specifications. 
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